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Abstract

The quantum-inspired immune clonal algorithm (QICA) is a rising intelligence algorithm. Based on evolutionary game theory and
QICA, a quantum-inspired immune algorithm embedded with evolutionary game (EGQICA) is proposed to solve combination optimi-
zation problems. In this paper, we map the quantum antibody’s finding the optimal solution to player’s pursuing maximum utility by
choosing strategies in evolutionary games. Replicator dynamics is used to model the behavior of the quantum antibody and the memory
mechanism is also introduced in this work. Experimental results indicate that the proposed approach maintains a good diversity and
achieves superior performance.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

The quantum-inspired optimization algorithm is a rising
intelligence algorithm that merges quantum mechanics and
computing intelligence of the classical computer [1]. As a
novel optimization technique, the quantum-inspired
immune clonal algorithm (QICA), which is based on merg-
ing quantum computing and clonal selection theory is
introduced in Ref. [2]. QICA has been used extensively in
many fields, including function optimization [3], communi-
cation system detection [4], pattern recognition [5], etc.

Game theory is a mathematical theory of socio-eco-
nomic phenomena exhibiting interaction among decision-
makers, whose actions affect each other. Smith introduced
evolutionary game theory by applying traditional game
theory to Biology [6,7]. Though evolutionary game theory
originated from biological game, it is applied successfully

in many fields besides biology, for example, economics,
management science, information science [8–12] and so
on. Ficici and Pollack introduced evolutionary game the-
ory in the simple co-evolutionary algorithm [13]. Wiegand
et al. used the evolutionary game-theoretic model to help
analyze the dynamical behaviors of co-evolutionary algo-
rithms [14]. The GA-evolutionary game is proposed to sim-
ulate the behavior of producers operating in the same
electricity market by Menniti et al. [15]. In Ref. [16], a hier-
archical Nash GA is presented for multi-objective optimi-
zation. Liu introduced evolutionary game theory in the
particle swarm optimization algorithm [17].

In this paper, we introduce evolutionary game theory in
the QICA and present a quantum-inspired immune algo-
rithm embedded with evolutionary game (EGQICA). We
use replicator dynamics to simulate the actions of quantum
antibodies. The introduction of game strategy increases the
diversity of candidates and realizes the information com-
munication among individuals. Moreover, the memory
mechanism is also introduced to improve the search
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efficiency of the new algorithm. Simulation results proved
the algorithm’s betterment.

2. Quantum-inspired immune clonal algorithm

The quantum-inspired immune clonal algorithm’s opera-
tion process is as follows. Each quantum antibody adopts
qubit representation. During iteration, each qubit phase of
the antibody in the population is compared with that of
the current best one, and then modification of its appearing
probability is made, which aims at the evolution towards the
fitter antibody with a larger probability. Besides, every anti-
body produced by observation of the quantum antibody rep-
resents a possible solution to the optimization task.

First, the definitions of elements for the general optimi-
zation problem are described.

A general optimization problem can be formulated as
the following model:

minimize f ðxÞ x ¼ ðx1; x2; . . . ; xnÞ 2 S ð1Þ
where f(x) is an objective function, S # Rn defines the
search space which is an n-dimensional space. That means
S ¼ ½x; x�; x ¼ ðx1; x2; . . . ; xnÞ; x ¼ ðx1; x2; . . . ; xnÞ.

The affinity for the general optimization problem is
defined as follows.

Definition 1. An antibody, a, represents a candidate solution
to the optimization problem. The value of its affinity is equal
to the negative value of the objective function,

a 2 S and DðaÞ ¼ �f ðaÞ ð2Þ
Next lets present the state of the quantum antibody at the
tth generation:

qt ¼
at

1 at
2 � � � at
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� �

ð3Þ

where m is the length of the qubit antibody qt, at
l and bt

l

(l = 1, 2, . . . , m) are randomly generated between �1 and
1, satisfying jat

lj
2 þ jbt

lj
2 ¼ 1.

Then the quantum antibodies need to produce common
antibodies for evaluating the affinity of them by the observ-
ing operator.

According to the affinity function, a qubit antibody qt in
the population will be copied into the Ci same qubit anti-
bodies in the solution space by using the clone operator
H, which is defined as H(qt) = I � qt, and I are identity
matrices of dimensionality C. Generally, C is given by:

C ¼ Nc �
DðqtÞ
P

DðqtÞ

� �

ð4Þ

which can be adjusted self-adaptively by the affinity D(�).
Nc is a given value relating to the clone scale,

P

D(qt) is
the total affinity of all the qubit antibodies in a
population.

After the clone operator, the proliferative qubit antibod-
ies are:
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And is updated by

at
t
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l
00

" #

¼ Uðht
lÞ
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l ¼ 1; 2 . . . ;m ð6Þ

The updated operator is

Uðht
lÞ ¼

cosðht
lÞ � sinðht

lÞ
sinðht

lÞ cosðht
lÞ

" #

ð7Þ

where ht
l is the rotate step and ht

l is defined as
ht

l ¼ k�f ðal; blÞ, and the function f(al, bl) focuses on guid-
ance by the current best antibody in the population as
shown in Ref. [2]. Judge the termination condition, if it is
satisfied, output the best solution and end the process,
otherwise perform the clonal selection operation and the
quantum recombination operation [2].

3. Evolutionary game theory

We begin with the model of Taylor and Jonker [18],
which restricts our view to the class of finite games in stra-
tegic form. Generally, a normal game consists of three key
components: players, strategies space and payoff function,
which is defined as:

G,hN ; ðSiÞ; ðP iÞi ð8Þ

where N,f1; 2 . . . ; ng is a set of players and n is a positive
integer. For each player i 2 N, ðSiÞ,ðS1; S2; . . . ; SnÞ denote
a set of allowable actions. The choice of a specific action
si 2 (Si) of a player i is called pure strategy. The vector
s = (s1, s2, . . . , sn) is called a pure strategies profile.
ðP iÞ,ðP 1; P 2; . . . ; P nÞ, Pi is the payoff to player i 2 N,
P i,uði; siÞ.

Replicator dynamics and evolutionary stable strategies
are the key concepts in evolutionary game theory to express
the adaptation of each population over time. Suppose
strategies space (Xi), consider a discrete time process
t = 1, 2, . . . and the proportion of the individuals in the
population who will select action j is xj

t , where
P

j2ðX iÞxj ¼ 1.
The replicator dynamics equation is

dxj
t

dt
,ðuðxj

t ; xÞ � uðx; xÞÞ � xj
t ð9Þ

where

uðx; xÞ ¼
X

xj
t uðsj; xÞ ð10Þ

uðxj
t ; xÞ is the payoff of the jth strategy and u(x, x) is the

average of payoffs’ over all individuals. This equation
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implies that the share of the jth strategy grows or shrinks in
proportion to the difference between its payoff and the
average payoff. Given two selective strategies of individuals
denoted by ‘‘p” and ‘‘n”, therefore, xp

t þ xn
t ¼ 1. From Eq.

(9), we can conclude:

dxp
t

dt
,ðuðxp

t ; xÞ � uðx; xÞÞ � xp
t ð11Þ

dxn
t

dt
,ðuðxn

t ; xÞ � uðx; xÞÞ � xn
t ð12Þ

From the equations above leads to:

dxp
t

dt
¼ xp

t ð1� xp
t Þ uðxp

t ; xÞ � uðxn
t ; xÞ

� �

ð13Þ

where uðxp
t ; xÞ and uðxn

t ; xÞ are the corresponding payoffs of
the strategies ‘‘p” and ‘‘n”.

4. Quantum-inspired immune algorithm embedded with

evolutionary game

4.1. The principle of EGQICA

The idea of the present work is to modify the QICA
algorithm so that each quantum in the population is asso-
ciated with a strategy taken from the evolutionary game
framework that is used to compute its update in the next
time step. In this paper, we make maps as indicated in
Fig. 1.

Therefore, all quantum antibodies research the best state
that can be looked at as players’ pursuing the maximum
payoff. Consider the bounded rationality of the quantum
mechanism, we use replicator dynamics to model the
research process of the EGQICA. First of all, the definition
of the model is given as follows:

Definition 2. For each quantum antibody i 2 N in the
population set N,f1; 2; . . . ; ng (n is the size of the
population), there are two allowable observing actions
ðSOiÞ,ðSO1; SO2Þ, Pi is the affinity of the quantum antibody
i 2 N, P i,uði; siÞ.

Definition of SO1: For the binary coding problem, we
observe the qubit antibody qt and produce the binary
strings population pt ¼ fxt

1; x
t
2; . . . ; xt

ng; where xt
iði ¼ 1; 2;

. . . ; nÞ is numeric strings of length m derived from the
amplitude at

l or bt
l (l = 1, . . . , m). The process is described

as follows: (i) generate a random number p 2 [0, 1]; (ii) if it
is larger than jat

lj
2
; the corresponding bit in pt takes ‘1’,

otherwise it takes ‘0’.
Definition of SO2: For the binary coding problem, we

observe the qubit antibody qt and produce the binary
strings population pt ¼ fxt

1; x
t
2; . . . ; xt

ng; where xt
i ði ¼ 1; 2;

. . . ; nÞ is numeric strings of length m derived from the
amplitude at

l or bt
l (l = 1, . . . , m). The process is described

as follows: (i) generate a random number p 2 [0, 1]; (ii) if it
is smaller than jat

lj
2
; the corresponding bit in pt takes ‘1’,

otherwise it takes ‘0’.
From Eq. (13), we can conclude:

dxSO1
t

dt
¼ xSO1

t ð1� xSO1
t Þ uðxSO1

t ; xÞ � uðxSO2
t ; xÞ

� �

ð14Þ

dxSO2
t

dt
¼ xSO2

t ð1� xSO2
t Þ uðxSO2

t ; xÞ � uðxSO1
t ; xÞ

� �

ð15Þ

Therefore, in the search process, if uðxSO1
t ; xÞ � uðxSO2

t ; xÞ,
then the proportion of the antibodies in the population
who will select action SO1 will be increased. Let the best
affinity of antibodies which select SO1 be denoted by BS1,
the qubit antibody qt will be updated towards BS1 accord-
ing to Eq. (6), and vice versa.

4.2. Memory cell

In this paper, the algorithm is composed of two popula-
tions: the memory cell M and the quantum population Q.

Definition 3. The quantum population Q,fqt
1; q

t
2; . . . ; qt

Ng,
N is the size of the quantum population.

Definition 4. The memory cell M,fqt
m1; q

t
m2; . . . ; qt

mN0
g, N0

is the size of the memory cell.

4.3. Proposed algorithm

The quantum-inspired immune algorithm embedded
with evolutionary game can be summarized in the follow-
ing steps:

Step 1. Initialization: Enact the halting criteria and the
parameters, and then generate the quantum population Q

and the memory cell M at random. Set evolution genera-
tion t = 0.

Step 2. Calculate affinities: Produce a population of anti-
body pt by observing Q and M with strategies SO1 and SO2,
then calculate the affinity. At generation t = 0,
xSO1

t ¼ xSO2
t ¼ 0:5.

Step 3. Clone operation: Clone each quantum antibody
in Q, the clone size is as shown in Eq. (4), giving rise to a
proliferative group Q0.

Step 4. Update operation: Observing Q0, and calculate
the affinities, then choose the best quantum antibody then
update Q0 according to Eq. (6).Fig. 1. Mapping relation.
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Step 5. Game operation: From Eqs. (14) and (15), update
xSO1

t and xSO2
t , respectively.

Step 6. Clonal selection operation: Note fqt
i0 as the best

quantum antibody in Q0, replace qt
i by fqt

i0 as probability
ppi to form Q00, which is defined as:

ppi ¼

1 affinityðqt
iÞ � affinity fqt

i
0

� 	

exp �
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� 	
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:

Step 7. Memory operation: This operation implements
clone, update, and clone selection on memory antibodies
in M. The best N0 antibodies of the population should be
saved in M after iteration once.

Step 8. Judge the termination condition, if it is satisfied,
output the best solution and end the process, otherwise per-
form quantum recombination Q00.

4.4. Convergence of the algorithm

Definition 5. Assume that the size of a population is n, and
X is a searching space to which all the antibodies belong.
Let X t ¼ ðxt

1; x
t
2; . . . ; xt

nÞ in Sn be the population at time t

and for X(t), we define:

M ¼ X
*

f ðX
*







Þ ¼ maxff ðX t

iÞ; i � ng
n o

ð16Þ

M� ¼ X
*

f ðX
*







Þ ¼ maxff ðX Þ;X 2 Sng

n o

ð17Þ

M is called the satisfied set of population Xt and M* is de-
fined as the global satisfied set of state Sn.

Definition 6. Let ft = max{f(xi): i = 1, 2, . . . , n}, for any
initial distribution, if the following equation holds:

lim
t!1

Pfft # M�g ¼ 1 ð18Þ

where P stands for the probability, then we call the algo-
rithm convergent with probability 1.

Theorem 1. The population series of EGQICA {Qt, t P 0} is

a finite homogeneous Markov chain.

Proof. Like the evolutionary algorithms, the state transfer
of EGQICA is processed on the finite space; therefore, the
population is finite, since

Qtþ1 ¼ T ðQtÞ ¼ T g 	HðQtÞ 	 T u 	 T s 	 T m 	 T r ð19Þ
H, Tg, Tu, Ts, Tm and Tr indicate the clonal selection oper-
ator, the immune genetic operator, the clone operator and
directional operator, respectively. Note that the H, Tg, Tu,
Ts, Tm and Tr operators have no relation with t, thus Qt+1

only relates with Qt. Therefore, {Qt, t P 0} is the finite
homogeneous Markov chain. h

Theorem 2. The M of Markov chain of EGQICA is mono-

tone increasing, namely, "t P 0, f(Qt+1) P f(Qt).

Proof. Apparently, the individual of EGQICA does not
degenerate for our adopting holding best strategy in the
algorithm. h

Theorem 3. The EGQICA is convergent.

Proof. Let pi(k) = P(Xk = si), where P stands for the
probability and pk ¼

P

iRIpiðkÞ. Let |S| denote the number
of the states in S. (si 2 S ði ¼ 1; 2 . . . ; jSjÞ is a certain
state, then si = {x1, x2, . . . , xn}). Let Pij(k) be the proba-
bility of transition from X i

k to X j
k. Suppose that

I = {i | si \ s* – £}, two especial cases will be discussed
first:

1. If i 2 I, j R I, according to the Theorem forenamed, then

P ijðkÞ ¼ 0 ð20Þ

2. If i R I, j 2 I, then

P ijðkÞ > 0 ð21Þ
Next, we discuss the general case except for the above

two cases. According to the character of the Markov chain,
we have

pkþ1 ¼
X

si2S

X

jRI

piðkÞpijðkÞ

¼
X

i2I

X

jRI

piðkÞpijðkÞ þ
X

iRI

X

jRI

piðkÞpijðkÞ ð22Þ

Since

X

iRI

X

j2I

piðkÞpijðkÞ þ
X

iRI

X

jRI

piðkÞpijðkÞ ¼
X

iRI

piðkÞ ¼ pk

ð23Þ
Therefore,

X

iRI

X

jRI

piðkÞpijðkÞ ¼ pk �
X

iRI

X

j2I

piðkÞpijðkÞ ð24Þ

Eq. (23) can be obtained according to Eqs. (20) and (22)

0 � pkþ1 <
X

i2I

X

jRI

piðkÞpijðkÞ þ pk ¼ pk ð25Þ

Thus,

lim
k!1

pk ¼ 0 ð26Þ

Because

lim
k!1

Pffk ¼ f �g ¼ 1� lim
k!1

X

iRI

piðkÞ ¼ 1� lim
k!1

pk ð27Þ

and according to Eq. (25), we have

lim
k!1

Pffk ¼ f �g ¼ 1 ð28Þ

This implies that the EGQICA is convergent with the prob-
ability 1. h
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4.5. Simulation experiments

In order to show the efficiency of EGQICA, two combi-
natorial optimization test problems are introduced. On the
one hand, the satisfiability (SAT) problem is commonly
recognized as a fundamental problem in artificial intelli-
gence applications. On the other hand, there is a growing
interest in the research of applying evolutionary algorithms
to dynamic optimization problems recently [19].

Therefore, we use the SAT problem and the dynamic 0–
1 knapsack problems to test the algorithm.

4.5.1. Experiment 1

Formally, the SAT problem can be formulated as
follows:

f ðUÞ ¼ C1 ^ C2 ^ � � � ^ Cm;U ¼ fu1; u2; . . . ung
Ci ¼ ui1 _ ui2 _ � � � uik _ ur1 _ ur2 _ � � � url

i ¼ 1; 2; . . . ;m; i1; i2; . . . ; ik ¼ 1; 2; . . . ; n;

r1; r2; . . . ; rl ¼ 1; 2; . . . ; n

ð29Þ

Let U = {u1, u2, � � �un} be a set of n Boolean variables. Cor-
responding to each variable u are two literals uj and uj

(j = 1, 2, � � �n). A literal uj is true and uj is false. Ci

(i = 1, 2, � � �m) of literals is called a clause. The goal of
the SAT problem is to determine whether or not there ex-
ists an assignment of truth values to variables that makes
the formula f(U) true.

In this paper, the SAT problem is mapped to an optimi-
zation model:

f ðUÞ F
!

F ðUÞ

F ðUÞ ¼
X

m

k¼1

C0k

C0k ¼
Y

n

k¼1

ð1� xijÞ � xrj

ð30Þ

where 1� xij ¼ uij; xrj ¼ urj; uij; urj are arguments, and
xij, xrj are relevant real variables. When uij is true
(uij = 1), xij = 0 and vice versa. Therefore, the SAT prob-
lems are transformed to the minimum problem of F(U).

In the experiments, ‘‘Uniform Random-3-SAT” prob-
lems are chosen from the SATLIB library, which are shown
in Table 1.

In the experiments, the size of the quantum population
is 10, NC in Eq. (4) is 30, the probability of update is 0.5.
The performance of the proposed EGQICA will be com-
pared with the quantum-inspired immune clonal algorithm
(QICA) and the simple immune clone selection algorithm
(ICSA). In ICSA, the size of the population is 10, NC is
30, the probability of mutation is 1/n, where n is the dimen-
sion of the variables. The termination criterions are set to
be 106 generations. Table 2 is the comparison of the success
rate (success rate is defined as the times of the success/the
total running times) and the mean number of function eval-
uations between the two algorithms.

4.5.2. Experiment 2

The model of the dynamic knapsack problem we used in
our experiments is cited from Ref. [20].

Given a set of m items and a knapsack, the 0–1 knap-
sack problem can be described as

max pðxÞ ¼
X

m

j¼1

pjxj j ¼ 1; 2; . . . ;m

subject to
X

m

j¼1

wjxj � M

ð31Þ

where wj, pj are the weight and the profit of jth goods. In
this paper, M ¼ 0:5�

Pm
j¼1wj, m = 100, wj, pj 2 [1, 50].

The mechanism of greedy reparation is used to deal with
constraint. That is let rj = pj/wj, and rank r according to
non-descending order then delete goods which could not
satisfy the constraint condition. Construct the dynamic test

Table 1
3-SAT problems in the experiments.

Problem
sets

Number
of
problems

File names Number of
literals/
each
problem

Number of
clauses/each
problem

URSAT1 1000 uf20-01, uf20-02,
. . . , uf20-01000

20 91

URSAT2 1000 uf50-01, uf50-02,
. . . , uf50-01000

50 218

URSAT3 100 uf75-01, uf75-02,
. . . , uf75-0100

75 325

URSAT4 1000 uf100-01, uf100-02,
. . . , uf100-01000

100 430

URSAT5 100 uf125-01, uf125-02,
. . . , uf125-0100

125 538

URSAT6 100 uf150-01, uf150-02,
. . . , uf150-0100

150 645

URSAT7 100 uf1750-01, uf175-02,
. . . , uf175-0100

175 753

URSAT8 100 uf200-01, uf200-02,
. . . , uf200-0100

200 860

URSAT9 100 uf225-01, uf225-02,
. . . , uf225-0100

225 960

URSAT10 100 uf250-01,uf250-02,
. . . , uf250-0100

250 1065

Table 2
Comparison among EGQICA, QICA and ICSA.

Problem sets Success rate Mean number of function
evaluations

EGQICA ICSA QICA EGQICA ICSA QICA

URSAT1 1 1 1 355 611 380
URSAT2 1 1 1 1652 2464 1860
URSAT3 1 1 1 2450 4950 2950
URSAT4 1 1 1 4790 9120 6823
URSAT5 1 0.96 1 9980 16,200 11,950
URSAT6 1 0.91 1 15,720 23,860 15,821
URSAT7 0.99 0.77 0.98 18,970 36,360 23,371
URSAT8 0.98 0.80 0.95 25,785 45,480 34,110
URSAT9 0.95 0.72 0.93 35,285 54,980 39,302
URSAT10 0.96 0.72 0.94 49,360 63,495 55,728
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algorithm as follows: given a general binary static function
f(x), create a binary mask Q with the same length of the
antibody representation x and perform the operation
x 
 Q. Let f(x) be changed at the tth generation, while
f(x) at the (t + 1)th can be formulated as:

f ðx; t þ 1Þ ¼ f ðx
 Q; tÞ ð32Þ

It can be seen that there are two parameters, one is t, which
decides the change period; the other is the proportion of
the number of ‘‘1” in Q denoted by k, which controls the
degree of environmental change.

In the experiments, the size of the quantum population
is 10, NC in Eq. (4) is 10. Experimental data are the statis-
tical results of 50 times independent running. The perfor-
mance of the proposed EGQICA will be compared with
the quantum-inspired immune clonal algorithm (QICA).

Fig. 2 is a comparison of the performance of conver-
gence achieved by different algorithms. The termination
criterion is set to be 100 generations and 500 generations.
The change period t is set to be 10 and 100. k is changed
from 0.05 to 1. With the problem changed periodically,
the convergence curve dithers, respectively. When problem
changes more acutely with increase in k, EGQICA can still
keep well the performance of convergence, as the appropri-
ate strategy can be self-adaptively chosen in EGQICA by
the evolutionary game approach. The advantage of EGQ-
ICA can be seen clearly in Fig. 2(c) and (d). Table 3 is

the comparison of the mean function value and run time
between the two algorithms. It can be seen that the pro-
posed algorithm implemented satisfies performance with
less mean running time. The simulations suggest that EGQ-
ICA still performs quite well in the dynamic optimization
problems.

5. Conclusion

In this paper, we combine game theory with the quan-
tum-inspired immune optimization and use the memory
technique to overcome the premature convergence. We
present a quantum-inspired immune algorithm based on
evolutionary game theory. The algorithm is applied to sta-
tic and dynamic combinatorial optimization test problems.
The good performances of EGQICA on dealing with the

Fig. 2. Convergence performance versus generation with different t and k.

Table 3
Comparison between EGQICA and QICA.

t k Mean running
time (s)

Mean function value (standard
deviation of function value)

EGQICA QICA EGQICA QICA

10 0.05 23.04 25.12 3825.1 (0) 3751.9 (0)
0.8 35.16 35.63 3610.4 (1 � 10�3) 3490.8 (3 � 10�4)
1 36.25 38.64 3700 (4 � 10�4) 3405.2 (5 � 10�4)

100 1.0 325.32 322.87 3756.5 (6 � 10�5) 3385 (4 � 10�4)
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test problems indicate that the proposed embedded game
strategy and memory operator maintain good population
diversity and less likely to be trapped in local optima.
The abstraction of various model of game and application
of this EGQICA to quantum intelligent computing
deserves our further research.
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